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Abstract

This paper studies the problem of fault tolerant control design for time-delayed systems subject to

actuator saturation. Delay- and fault-range-dependent estimate for the domain of attraction of the

origin is presented using the linear matrix inequalities (LMIs) techniques. An illustrative example is

exploited to show the effectiveness of the proposed design procedures.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Systems with interval time-varying delay constitute basic mathematical models of real

phenomena, for instance, chemical engineering systems, distributed networks, inferred

grinding model, manual control, microwave oscillator, neural network, population

dynamic model, ship stabilization, and systems with lossless transmission lines. The

existence of time delay may cause instability or bad performances in dynamic systems.

Hence the stability and stabilization problems for time-varying delay systems have received

some attention [1–3].
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Nearly all physical systems are subject to saturation constraints, such as actuator

saturation and/or sensor saturation, which is usually a source of instability in control

systems [4]. Considerable attention has been paid to such systems with saturation of

control signals. In the existing literatures, there are mainly two developed approaches: (1)

let saturation do not occur, which is called positive invariance approach [5] and (2) Allow

saturation to take effect while guaranteeing asymptotic stability of the system [6,7]. Both of

those two approaches, the main problem to be addressed is to get a large enough domain

of initial states, which ensures an asymptotic stability of the system with input saturation.

Actuator/sensor failure is also inevitable in practical control applications. Much effort

has been devoted to the fault tolerant control (FTC) design, since unexpected failure may

result in a substantial damage of the system, and even be hazardous to the plant personnel

and environments [8–11]. Therefore, FTC design is essential for the control system.

In this paper, we aim to develop a fault tolerant controller such that the system under

the above instable sources at a same time, such as interval time-varying delay, uncertain

actuator failures and actuator saturation, can be operating properly, since those

phenomena are not isolated existence practically. Furthermore, an optimization problem

with LMI constraints is formulated to obtain the largest contractively invariant set by

using the proposed optimization algorithm. To the best of our knowledge, the problem

remains open and challenging, which motivates us to the current study.

Notation: Rn denotes the n-dimensional Euclidean space, Rn�m is the set of real n�m

matrices, I is the identity matrix of appropriate dimensions, J � J stands for the Euclidean

vector norm or spectral norm as appropriate. The notation X40 (respectively, Xo0Þ, for
X 2 Rn�n means that the matrix X is a real symmetric positive definite (respectively,

negative definite). Ln,t21 ¼Lð½�t2,0�,RnÞ denotes the Banach space of continuous vector

functions mapping the interval ½�t20� into Rn with the topology of uniform convergence.

The asterisk n in a matrix is used to denote term that is induced by symmetry, Matrices, if

they are not explicitly stated, are assumed to have compatible dimensions.

2. System description

Consider the following time-varying delay system with the saturation of control input

_xðtÞ ¼AxðtÞ þ Adxðt�tðtÞÞ þ BsðuðtÞÞ ð1Þ

xðtÞ ¼ fðtÞ, t 2 ½�t2,0� ð2Þ
where xðtÞ 2 Rn and uðtÞ 2 Rm denote the state and control vector, respectively. A, Ad and

B are known constant matrices with appropriate dimensions, tðtÞ is an interval time-

varying delay which satisfies 0ot1rtðtÞrt2, fðtÞ is a continuous vector valued initial

function. The function sð�Þ is the standard saturation function defined as follows:

sðuðtÞÞ ¼ ½sðu1ðtÞÞsðu2ðtÞÞ � � � sðumðtÞÞ�T ð3Þ
where sðuiðtÞÞ ¼ signðuiðtÞÞminf1,juiðtÞjg.
The following actuator fault model and state-feedback control strategy are adopted:

uF ðtÞ ¼XKxðtÞ ð4Þ
where X is an actuator fault scale factor matrix, and

X¼ diagfx1,x2 . . . xmg, 0rxirxirxi ði 2 I9f1,2, . . . ,mgÞ ð5Þ
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where x
i
and xi ði 2 I Þ are given constants, especially, if xi ¼ 0 means that the ith actuator

completely fails, and xi ¼ 1 denotes the ith actuator is normal.

Define

X0 ¼ diag½x10, . . . ,xm0�, xi0 ¼ ðx
i
þ xiÞ=2 ð6Þ

X1 ¼ diag½x11, . . . ,xm1�, xi1 ¼ ðxi�x
i
Þ=2 ð7Þ

Then, the matrix X can be rewritten as

X¼ X0 þ X1 DJ ð8Þ
where DJ ¼ diag½j1, . . . ,jm�, jjijo1,i¼ 1, . . . ,m.

The dynamic Eq. (1) with consideration of actuator fault model (4) is then described by

_xðtÞ ¼AxðtÞ þ Adxðt�tðtÞÞ þ BsðXKxðtÞÞ ð9Þ
To estimate the domain of attraction, the following two sets are introduced.

LðF Þ9fxðtÞ 2 Rn
: jfixðtÞjrui,i 2 Ig ð10Þ

EðP,1Þ9fxðtÞ 2 Rn
: xðtÞTPxðtÞr1g ð11Þ

where fi is the ith row of the matrix F 2 Rn�n, and P 2 Rn�n is a positive-definite matrix.

We introduce the following definition and lemmas firstly, which will be used in the

subsequent development.

Definition 1 (Zhang et al. [12]). For an initial condition x0 2 Ln,t2 , suppose the state

trajectory of system (1) xðt,x0Þ is asymptotically stable, then the domain of attraction of

the origin is

X :¼ x0 2 Ln,t2 : lim
t-1

xðt,t0Þ ¼ 0g
n

ð12Þ

Lemma 1 (Wang et al. [13]). Let U ,V ,W ,X be real matrices of appropriate dimensions

with X satisfying X ¼XT . Then

X þUVW þWTVTUT
o0 for all VTVrI

if and only if there exists a scalar e40 such that

X þ eUUT þ e�1WTWo0

Lemma 2 (Gu et al. [14]). For any constant matrix R 2 Rn�n, R40, scalars tmrtðtÞrtM ,

and vector function _x : ½�tm,0�-Rn such that the following integration is well defined, it

holds that

�tm

Z t

t�tm

_xT ðtÞR _xðtÞr
xðtÞ

xðt�tmÞ

" #T �R R

n �R

� �

xðtÞ
xðt�tmÞ

" #

ð13Þ

Lemma 3 (Park and Wan Ko [15]). Suppose S,T , and O are constant matrices of

appropriate dimensions. Then

ðtðtÞ�tmÞS þ ðtM�tðtÞÞT þ Oo0 ð14Þ
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is true for any tðtÞ 2 ½tm,tM � if and only if

ðtM�tmÞS þ Oo0 ð15Þ

ðtM�tmÞT þ Oo0 ð16Þ

Let W be the set of m�m diagonal matrices whose diagonal elements are 1 or 0.

Wi ði¼ 1,2, . . . ,2mÞ is the element of W, and define W�
i ¼ I�Wi, obviously, Wi is also an

element of W.

Lemma 4 (Hu et al. [7]). Let F ,H 2 Rm�n be given. For x 2 Rn, if x 2 LðHÞ, then
sðFxðtÞÞ 2 cofWiFxðtÞ þW�

i HxðtÞ : i 2 Ig ð17Þ
where the notation cof�g denotes the convex hull of a set.

The objective of the paper is to design a reliable state-feedback controller for the system

(1) with consideration of the actuators saturation and failures such that the closed-loop

system (9) is asymptotically stable.

3. Main result

In this section, we will first focus on the condition of local asymptotic stability for the systems

with the actuator saturation and failures. The design of reliable controller is then presented.

Theorem 1. For given scalars t1,t2, the closed-loop system (9) with consideration of all

possible faults is asymptotically stable within the set EðP,1Þfx 2 RnjxT ðtÞPxðtÞr1g, if there
exist matrices P40, R140, R240, Q140, Q240 and scalars e such that the following

matrix inequalities hold

EðP,1Þ � LðHÞ ð18Þ

C0
j n n n n

PA �PQ�1P n n n

FðlÞ 0 � ffiffiffiffiffiffi

t21
p

Q2 n n

eC1
j eXT

1 W
T
j B

TP 0 �eI n

C2
j 0 0 0 �eI

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

o0
l ¼ 1,2

j ¼ 1,2, . . . ,2m

 !

ð19Þ

where

C0
j ¼

C11 n n n

C21 C22 n n

C31 C32 C33 n

C41 C42 C43 C44

2

6

6

6

4

3

7

7

7

5

Fð1Þ ¼ ST , Fð2Þ ¼ TT

C1
j ¼ ½XT

1 W
T
j B

TP 0 0 0�, C2
j ¼ ½K 0 0 0�
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C11 ¼R1 þ R2�Q1 þ PðAþ BðWjX0K þW�
j HÞÞ þ ðAþ BðWjX0K þW�

j HÞÞTP
C21 ¼Q1 þ ST

1 , C22 ¼�R1�Q1 þ S2 þ ST
2

C31 ¼ TT
1 �ST

1 þ AT
d P, C32 ¼ S3 þ TT

2 �ST
2 , C33 ¼T3 þ TT

3 �S3�ST
3

C41 ¼�TT
1 , C42 ¼ S4�TT

2 , C43 ¼ T4�S4�TT
3 , C44 ¼�R2�T4�TT

4

A ¼ ½Aþ BðWjX0K þW�
j HÞ 0 Ad 0�, t21 ¼ t2�t1

Proof. Choose the following Lyapunov function for the system (9) as

V ðxtÞ ¼
X

3

i ¼ 1

ViðxtÞ ð20Þ

where

V1ðxtÞ ¼ xT ðtÞPxðtÞ

V2ðxtÞ ¼
Z t

t�t1

xT ðsÞR1xðsÞ dsþ
Z t

t�t2

xT ðsÞR2xðsÞ ds

V3ðxtÞ ¼ t1

Z 0

�t1

Z t

tþs

_xT ðvÞQ1 _xðvÞ dv dsþ
Z �t1

�t2

Z t

tþs

_xT ðvÞQ2 _xðvÞ dv ds

Taking the derivative of V ðxtÞ along the trajectory of the system (9), and using Lemma

2, It follows:

_V 1ðxtÞ ¼ 2xT ðtÞP _xðtÞ

_V 2ðxtÞ ¼ xT ðtÞðR1 þ R2ÞxðtÞ�
X

2

i ¼ 1

xT ðt�tiÞRixðt�tiÞ

_V 3ðxtÞr _xT ðtÞ½t21Q1 þ t21Q2� _xðtÞ þ
xðtÞ

xðt�t1Þ

" #T �Q1 n

Q1 �Q1

" #

xðtÞ
xðt�t1Þ

" #

�
Z t�t1

t�t2

_xT ðsÞQ2 _xðsÞ ds

Employing the free-weighting matrix method [16,1], we have

2zT ðtÞS xðt�t1Þ�xðt�tðtÞÞ�
Z t�t1

t�tðtÞ
_xðsÞ ds

� �

¼ 0 ð21Þ

2zT ðtÞT xðt�tðtÞÞ�xðt�t2Þ�
Z t�tðtÞ

t�t2

_xðsÞ ds
� �

¼ 0 ð22Þ

where zðtÞ ¼ ½xT ðtÞ xT ðt�t1Þ xT ðt�tðtÞÞ xT ðt�t2Þ�T .
Similar the method in [17,18], we have

�2zT ðtÞS
Z t�t1

t�tðtÞ
_xðsÞ dsrðtðtÞ�t1ÞzT ðtÞQ�1

2 STzðtÞ þ
Z t�t1

t�tðtÞ
_xT ðsÞQ2 _xðsÞ ds ð23Þ
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�2zT ðtÞT
Z t�tðtÞ

t�t2

_xðsÞ dsrðt2�tðtÞÞzT ðtÞTQ�1
2 TTzðtÞ þ

Z t�tðtÞ

t�t2

_xT ðsÞQ2 _xðsÞ ds ð24Þ

From Eq. (18) and Lemma 4, we can rewritten sðuðtÞÞ for all xðtÞ 2 EðP,1Þ as
sðXKxðtÞÞ ¼KjxðtÞ ð25Þ

where

Kj ¼
X

2m

j ¼ 1

yjðWjXK þW�
j HÞ

X

2m

j ¼ 1

yj ¼ 1,yj40

 !

ð26Þ

Then, the closed-loop system (9) can be further rewritten as

_xðtÞ ¼AxðtÞ þ Adxðt�tðtÞÞ þ BK jxðtÞ ð27Þ

Calculate the time derivatives of V ðxtÞ along the trajectories of the system (27), it yields

_V ðxtÞr2xT ðtÞP _xðtÞ þ xT ðtÞðR1 þ R2ÞxðtÞ�
X

2

i ¼ 1

xT ðt�tiÞRixðt�tiÞ

þ _xT ðtÞQ _xðtÞ þ
xðtÞ

xðt�t1Þ

" #T �Q1 n

Q1 �Q1

" #

xðtÞ
xðt�t1Þ

" #

þ2zT ðtÞ½Sxðt�t1Þ þ ðT�SÞxðt�tðtÞÞ�Txðt�t2Þ�
þ2zT ðtÞS½ðAþ BK jÞxðtÞ þ Adxðt�tðtÞÞ� _xðtÞ�
þzT ðtÞ½ðtðtÞ�t1ÞSQ�1

2 ST þ ðt2�tðtÞÞTQ�1
2 TT �zðtÞ

r

X

2m

j ¼ 1

yjz
T ðtÞfCj þ ½ðtðtÞ�t1ÞSQ�1

2 ST þ ðt2�tðtÞÞTQ�1
2 TT �gzðtÞ

where Cj ¼C0
j þC1T

j DJC2
j þC2T

j DJTC1
j þA

T
QA, Q¼ t21Q1 þ t21Q2, then one can

conclude that if

Cj þ ½ðtðtÞ�t1ÞSQ�1
2 ST þ ðt2�tðtÞÞTQ�1

2 TT �o0 j ¼ 1,2, . . . ,2m ð28Þ
holds, then _V ðxtÞo0.

Based on Lemmas 1 and 3 and Schur complement, we can know that Eq. (19) is a

sufficient condition to guarantee Eq. (28) holds. This completes the proof. &

Theorem 1 gives a sufficient condition to guarantee the stability of the closed-loop

system (9). Now we will give an LMI-based optimization algorithm to obtain the largest

contractively invariant ellipsoid EðP,1Þ for the systems (27).

With the optimization method in [7], an exact invariant set with least degree of

conservativeness can be formulated as

max a

s:t:
aO � EðP,1Þ
ð18Þ2ð19Þ

(

ð29Þ

where O¼ EðP,1Þ,P 2 Rn�n.
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Theorem 2. For given scalars t1, t2, E and matrix Xiði¼ 0,1Þ. The closed-loop system (9),

under the all possible faults and saturation of the control input, is asymptotically stable, if

there exist matrices X40, R140, R240, Q140, Q240, Y and scalars e40 such that the

following LMIs hold

ui n

lTi uiX

" #

40 i 2 I ð30Þ

C
0

j n n n n

C
1

j �2EX þ E2Q n n n

FðlÞ 0 � ffiffiffiffiffiffi

t21
p

Q2 n n

eC
1

j XT
1 W

T
j B

T 0 �eI n

C
2

j 0 0 0 �eI

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

o0,
l ¼ 1,2

j ¼ 1,2, . . . ,2m

 !

ð31Þ

where

C
0

j ¼

C11 n n n

C21 C22 n n

C31 C32 C33 n

C41 C42 C43 C44

2

6

6

6

6

4

3

7

7

7

7

5

C
1

j ¼ ½AX þ BW iX0Y þ BW�
i L 0 Aþ dX 0�

C
1

j ¼ ½XT
1 W

T
j B

T 0 0 0�
C

2

j ¼ ½Y 0 0 0�
C11 ¼R1 þ R2�Q1 þ AX þ XAT þ BW jX0Y þ XT

0 W
T
j B

T þ BW�
j Lþ LTW�T

j BT

C21 ¼Q1 þ S
T

1 ,C22 ¼�R1�Q1 þ S2 þ S
T

2

C31 ¼T
T

1 �S
T

1 þ XAT
d , C32 ¼ S3 þ T

T

2 �S
T

2 , C33 ¼ T 3 þ T
T

3 �S3�S
T

3

C41 ¼�T
T

1 , C42 ¼ S4�T
T

2 , C43 ¼ T 4�S4�T
T

3 , C44 ¼�R2�T 4�T
T

4

Fð1Þ ¼ S
T
, Fð2Þ ¼ T

T
, Q ¼ t21Q1 þ t21Q2

In addition, the gain of the fault tolerant controller in Eq. (4) is given by K ¼YX�1.

Proof. From [7], the constraint (18) is equivalent to

ui n

hTi uiP

" #

Z0, i 2 I ð32Þ

where hi is the ith row of H.
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Define X ¼ P�1 and li¼hiX, one can see that Eq. (32) is equivalent to Eq. (30) using Shur

complement.

Due to ðQ�E�1PÞQ�1ðQ�E�1PÞZ0 for Q40,P40 and E40, it gives that

�PQ�1Pr�2EPþ E2Q ð33Þ

Obviously,

C0
j n n n n

PA �2EPi þ E2Q n n n

FðlÞ 0 � ffiffiffiffiffiffi

t21
p

Q2 n n

eC1
j eXT

1 W
T
j B

TP 0 �eI n

C2
j 0 0 0 �eI

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

o0
l ¼ 1,2

j ¼ 1,2, . . . ,2m

 !

ð34Þ

is a sufficient condition of Eq. (19). Pre- and post-multiply Eq. (34) by

diagfX ,X ,X ,X ,X ,X ,I ,Ig, it follows Eq. (31) holds. This completes the proof. &

To find an exact invariant set with least degree of conservativeness, Theorem 2 can be

formulated as the following optimizing problem:

max a

s:t:
aO � EðP,1Þ
ð30Þ2ð31Þ

(

ð35Þ

where O¼ EðP,1Þ,P 2 Rn�n. Using Schur complement, one can know that Eq. (35) is

equivalent to

inf g

s:t:

gP n

I X

� �

Z0

ð30Þ2ð31Þ

8

>

<

>

:

ð36Þ

where g¼ 1=a2.
Choose X0 ¼ I and X1 ¼ 0 in Theorem 2, the system (27) is then becomes a normal

system, i.e. there is no any failure occurring in the system’s running process. The following

corollary can be obtained using the similar method.

Corollary 1. For given scalars t1,t2, the closed-loop system (9) under the constrain of

saturation of control input is asymptotically stable, if there exist matrices X40, ~R140,
~R240, ~Q140, ~Q240 and scalars e40 such that the following LMIs hold

ui n

lTi uiX

" #

40, i 2 I ð37Þ
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~C
0

j n n

~C
1

j �2EX þ E2 ~Q n

~FðlÞ 0 � ffiffiffiffiffiffi

t21
p

~Q2

2

6

6

6

4

3

7

7

7

5

ð38Þ

where

~C
0

j ¼

~C11 n n n

~C21
~C22 n n

~C31
~C32

~C33 n

~C41
~C42

~C43
~C44

2

6

6

6

6

4

3

7

7

7

7

5

~C
1

j ¼ ½AX þ BW iY þ BW�
i L 0 Aþ dX 0�

~C
1

j ¼ ½XT
1 W

T
j B

T 0 0 0�
~C
2

j ¼ ½Y 0 0 0�
~C11 ¼ ~R1 þ ~R2� ~Q1 þ AX þ XAT þ BW jY þWT

j B
T þ BW�

j Lþ LTW�T
j BT

~C21 ¼ ~Q1 þ ~S
T

1 ,
~C22 ¼� ~R1� ~Q1 þ ~S2 þ ~S

T

2

~C31 ¼ ~T
T

1 � ~S
T

1 þ XAT
d ,

~C32 ¼ ~S3 þ ~T
T

2 � ~S
T

2 ,
~C33 ¼ ~T 3 þ ~T

T

3 � ~S3� ~S
T

3

~C41 ¼� ~T
T

1 ,
~C42 ¼ ~S4� ~T

T

2 ,
~C43 ¼ ~T 4� ~S4� ~T

T

3 ,
~C44 ¼� ~R2� ~T 4� ~T

T

4

~Fð1Þ ¼ ~S
T
, ~Fð2Þ ¼ ~T

T
, ~Q ¼ t21

~Q1 þ t21 ~Q2

Using the similar optimization method, one can get the largest ‘‘contractively invariant

ellipsoid’’ as follows:

min ~g

s:t:

~g ~P n

I X

" #

Z0

ð37Þ2ð38Þ

8

>

>

<

>

>

:

ð39Þ

where ~P 2 Rn�n.

4. A numerical example

In this section, a numerical example is presented to demonstrate the effectiveness of the

proposed method. Attention is focused on the controller design for the delay system with

both actuator failure and its saturation.

Example 1. The parameters of continuous-time system (1) with state time-delay satisfying

0rtðtÞr0:35 are given as

A¼
0:5 �1

0:5 �0:5

� �

, Ad ¼
0:6 0:4

0 �0:5

� �

, B¼
1

1

� �

, ui ¼ 5
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The following two cases are considered:

Case i: The actuator is normal, i.e. X � Im�m;

Case ii: The actuator is abnormal, and the fault range is assumed that 0:4rx1r0:8.
Corollary 1 is used to address the problem of Case 1, from which the following results

can be obtained with E¼ 1:

P¼
0:0962 �0:0167

�0:0167 0:0196

� �

K ¼ ½�1:8463 0:6562�
H ¼ ½�1:4684 0:4640�

Three ellipsoids are plotted in Fig. 1, where the inner dotted-dash ellipsoid is obtained

by the method of [19] whose system is in a normal condition, and the outer solid and

dashed ellipsoid are the sets EðP,1Þ and aXR under the condition of Case i, respectively,

from which one can see clearly that the state of the examined system converges to the

origin within the estimated domain of attraction despite actuator saturation and the

interval time-varying delays. In addition, it can be shown that our approach gives a larger

estimation of the domain of attraction then the existed one. Also it can be observed that

the ellipsoid set is contained inside the set of admissible saturations LðHÞ as well.
Case ii investigates the problem of the control system subject to actuator failure, the

reliable controller and its corresponding parameters can be obtained Theorem 2

P¼
0:2312 �0:0472

�0:0472 0:0376

� �

K ¼ ½�4:1995 1:3613�
H ¼ ½�2:2108 0:7414�

Fig. 2 shows the resulting invariant ellipsoids of the system with normal (the outer) and

actuator fault (the inner) conditions, respectively. Obviously, the estimated ellipsoid under
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Fig. 1. Estimates of the domain of attraction and state trajectories without actuator failure.
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Case i is bigger than the one under Case ii, since the failure occurs at the actuator of the

control system. From Fig. 3, one can see that the closed-loop system has a good control

performances by using the proposed fault tolerant controller, although there exist some

instable sources, such as time delay, actuator saturation, and failures etc.

5. Conclusion

The reliable control design for a class of interval time-varying delay systems subject to

actuator failure and saturation is presented in this paper. Delay- and fault-range-
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Fig. 2. Estimates of the domain of attraction under actuator failure.
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Fig. 3. State trajectories using fault-tolerant controller.
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dependent optimization approach is used to enlarge the estimation of the domain of

attraction by a set of LMIs. A numerical example is used to show the effectiveness of the

proposed method. However, the results in this paper are not concerned with the

nondeterministic systems, such as switch system [1,20], which is the future research

direction.
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